MEASURE THEORY AND INTEGRATION — FINAL EXAM

1. Let £ C R be a Borel measurable set with finite measure m(E).

(a) Show that there exists a Borel measurable set A C E with m(A) = m(E)/2.

(b) Show that for all € > 0 there exists an open set B with £ C B and m(B) <
m(E) +e.

Solution.

(a) For z > 0, define f(x) = m(E N [—z,z]). f is continuous since

[f(z+y) - fz)| =

|
3
S|
D)
S

|
=
8
+
=,

—m(EN|[—xz,z])
EN([-z—y —2)U(z,z+y]))
Enj—z—y,—x))+m(EN (z,z+y])
[z —y,—x)) + m((z,z + y]) < 2y.

Also note that f(0) < m({0}) = 0 and the sets E N[—n,n| are increasing and their
union is equal to FE, so

lim f(n)= T}l_}rlgo m(E N [—n,n]) = m(E).

n—00

By the intermediate value theorem, there exists x such that f(z) = m(EN[—x,z]) =
E)/2.

(b) Fix € > 0. Recall that, since E' is measurable,
m(E) = m*(F) = inf {ZK(R,) : R1, Ra, ... are rectangles covering E} .

We can thus choose Ry, Ry, ... covering E such that > .2, {(R;) < m(E) + ¢/2.
Now for each i, take an open rectangle R, which contains i and such that m(R}) =
{(R;) + €27~ We then have E C UR! and

i’m R)) Si D+ e27 ) <m(E) +e.

2. (a) Let f be a non-negative and measurable function defined on a measure space

(Q, A, i1). Show that
p{w: flw) >a}) < /fd,u Vo > 0.

(b) Show that a measure space (€, A, u) is o-finite if and only if there exists an inte-
grable function f :Q — R so that f(w) > 0 for all w.

Solution.

(a) fza ]l{w:f(w)>a}7 S0

[ranz @ dpepa di=ault: f@) > a))



(b) Assume that the space is o-finite. Then, there exist sets 1 C Qo C --- so that
Q, € A, u(9,) < oo for all n and U329, = Q. We define

F=3 02" u(@)™" 1o,
n=1

We then have f(w) > 0 for all w (since every w belongs to some 2,,) and

Lisran= [ = 322 @) ) < o

so f is integrable.
Now assume there exists some integrable and strictly positive function f defined
on €. Let

Qp, ={w: f(w) >1/n}.
The facts that €2, C Q4 for each n and U722, = Q is evident. Moreover,

i'u(ﬂn)</gnfdu</ﬂfdu<oo7

so u(£,) < oo for each n.

3. Assume that f, : R = R, n € N, are measurable functions with f; > fo > --- > 0 and
such that [, f dm — 0 (m denotes Lebesgue measure). Prove that f, — 0 almost
everywhere.

Solution. For every z, the sequence (f,(x))y>1 is decreasing and bounded, so we can
define f(z) = limy—y00 fn(x). Since [ f, — 0, there exists N such that [ f, < oo for all
n > N. Then, fy is an integrable function which dominates |f|, |fx|, |fn+1], |fn+2l,
..., so the dominated convergence theorem implies that

nlzaz/fn :H&%N/fn :/f-

On the other hand, we are told that [ f, — 0, so we have [ f = 0. Since f > 0, we
must have f = 0 almost everywhere. This shows that f,, — 0 almost everywhere.

4. Let (21,.41) and (2, A2) be two measurable spaces.

(a) Give the definition of the product o-algebra A; ® As.
(b) Show that, for every A € A; ® Ay and every w; € Q;, we have A, € As (recall

that A,, = {wa: (w1, w2) € A}).
Solution.

(a) A; ® Ay is the o-algebra generated by the collection G given by

G={A1 xAz: A1 € Ay, A € Ao}



(b) Fix wy € Q). First assume that A = A; x Ag, with A; € A;, Ay € Ay. We then
have

AQ if w1 € Al,
Ap, =

@ otherwise.

Defining F = {A € A ® Ay : A, € A2}, we have proved that G C F. We will
now prove that F is a o-algebra, so that

GCF = A ®Ay=0G) Co(F)=FCA ® A

and the proof will be complete. We have:
e O € F is obvious, since (@), = @ € As;
o if Ac F,then (A°),, = (A, ) € Az since A, € Az, so A° € F;
o if A, Ag,... € F, then (UA,)w, = U((4An)w,) € A2 since each (Ay),, € A, so
UA, € F.

5. Let p,q € (1,00) satisfy I%—i— é =1.

(a) Assume (ap)nen and (by)nen are sequences of real numbers satisfying

o oo
Z lan|P < oo, Z b, |7 < 0.
n=1 n=1

Show that the series >, (ay, - by) is convergent.

Hint. Work on the measure space (N, P(N), u), where p is the counting measure.
Note that a function f : N — R can be associated to a sequence (f,)nen by setting
fn = f(n). When is a function integrable, and what does integration mean in this
space? What is £P?

(b) Again assume that (a,)nen satisfies Y2 | |a,|P < co. Show that

00 1/p 00 e
(Z |an\p> = sup {Z(an bn) ¢ (bp)nen is a sequence satisfying Z |bp |9 = 1} .
n=1

n=1 n=1

Hint. To show that the left-hand side is less than or equal to the right-hand side,
consider
br = C -sign(ay) - (an)P ™,

n

where C' = (3°77, ]an|p)_1/q.
Solution.

(a) As suggested in the hint, we work on the measure space (N, P(N), u) and for func-
tions @ : N — R we use the notation a, rather than a(n) (so that a = (a,)nen).
Note that every function is measurable, since we take the power set as the o-
algebra. A function a is integrable if and only if >~>° , |a,| < co and, in that case,
we have fN an dp =307 | an. Furthermore, for 1 < p < oo, a € LP if and only if
>0 1 lan|? < 0o, and then we have

[e%e] 1/p
llall, = (ZI%I”) -



Now, given sequences a = (an)neny and b = (bp)nen so that >0 | |a,|P < oo and
Yoo |bn]? < 0o, Hélder’s inequality gives

[e9) 00 1/p 00 1/q
>l bl = [ o dp < [l - b1, = (Z myp) - (z \bn!q> <oo
n=1 n=1 n=1

Hence, ) (ay, - b,) is absolutely convergent, hence it is convergent.

Assume b = (b, )nen is a sequence satisfying Y | |b,|9 = 1. We then have, as in
the previous item

o0 o0

(an - bn) <D lan bl < llally - 16llg = lallp-

n=1 n=1

This shows that

0o 1/p 00 0o
(Z |an|p> > sup {Z(an ~bp) : (bn)nen is a sequence satisfying Z bl =1
n=1

n=1 n=1

In order to prove the reverse inequality, define

[e%s} —l/q
bt = C -sign(an) - (an)? !, n €N, where C' = (Z \an\p> :
n=1
Note that

D=0 Jan| PV =01y Janl” = (Z ran|p> -1
n=1 n=1 n=1 n=1

L g—
n =

S o] 1_% 00 1/p
(a0 ) = C Y fanl? = (Zlan‘p> i (Z!an'p> |
n=1 n=1 n=1

This proves that

We also have a,, - b}, = C - |a, [P for every n, so

o0

n=1

sup {Z(an bp) + (bn)nen is a sequence satisfying Z |bp |7 = 1} > Z(an b))

n=1 n=1

} |



