MEASURE THEORY AND INTEGRATION - FINAL EXAM

1. Let $E \subset \mathbb{R}$ be a Borel measurable set with finite measure $m(E)$.
(a) Show that there exists a Borel measurable set $A \subset E$ with $m(A)=m(E) / 2$.
(b) Show that for all $\varepsilon>0$ there exists an open set B with $E \subset B$ and $m(B)<$ $m(E)+\varepsilon$.

Solution.

(a) For $x \geq 0$, define $f(x)=m(E \cap[-x, x]) . f$ is continuous since

$$
\begin{aligned}
|f(x+y)-f(x)| & =m(E \cap[-x-y, x+y])-m(E \cap[-x, x]) \\
& =m(E \cap([-x-y,-x) \cup(x, x+y])) \\
& =m(E \cap[-x-y,-x))+m(E \cap(x, x+y]) \\
& =m([-x-y,-x))+m((x, x+y]) \leq 2 y
\end{aligned}
$$

Also note that $f(0) \leq m(\{0\})=0$ and the sets $E \cap[-n, n]$ are increasing and their union is equal to E, so

$$
\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} m(E \cap[-n, n])=m(E)
$$

By the intermediate value theorem, there exists x such that $f(x)=m(E \cap[-x, x])=$ $m(E) / 2$.
(b) Fix $\varepsilon>0$. Recall that, since E is measurable,

$$
m(E)=m^{*}(E)=\inf \left\{\sum_{i=1}^{\infty} \ell\left(R_{i}\right): R_{1}, R_{2}, \ldots \text { are rectangles covering } E\right\}
$$

We can thus choose R_{1}, R_{2}, \ldots covering E such that $\sum_{i=1}^{\infty} \ell\left(R_{i}\right)<m(E)+\varepsilon / 2$. Now for each i, take an open rectangle R_{i}^{\prime} which contains i and such that $m\left(R_{i}^{\prime}\right)=$ $\ell\left(R_{i}\right)+\varepsilon 2^{-i-1}$. We then have $E \subset \cup R_{i}^{\prime}$ and

$$
\sum_{i=1}^{\infty} m\left(R_{i}^{\prime}\right) \leq \sum_{i=1}^{\infty}\left(\ell\left(R_{i}\right)+\varepsilon 2^{-i-1}\right) \leq m(E)+\varepsilon
$$

2. (a) Let f be a non-negative and measurable function defined on a measure space $(\Omega, \mathcal{A}, \mu)$. Show that

$$
\mu(\{\omega: f(\omega)>\alpha\}) \leq \frac{1}{\alpha} \int_{\Omega} f d \mu \quad \forall \alpha>0
$$

(b) Show that a measure space $(\Omega, \mathcal{A}, \mu)$ is σ-finite if and only if there exists an integrable function $f: \Omega \rightarrow \mathbb{R}$ so that $f(\omega)>0$ for all ω.

Solution.

(a) $f \geq \alpha \cdot \mathbb{1}_{\{\omega: f(\omega)>\alpha\}}$, so

$$
\int f d \mu \geq \int \alpha \cdot \mathbb{1}_{\{\omega: f(\omega)>\alpha\}} d \mu=\alpha \cdot \mu(\{\omega: f(\omega)>\alpha\})
$$

(b) Assume that the space is σ-finite. Then, there exist sets $\Omega_{1} \subset \Omega_{2} \subset \cdots$ so that $\Omega_{n} \in \mathcal{A}, \mu\left(\Omega_{n}\right)<\infty$ for all n and $\cup_{n=1}^{\infty} \Omega_{n}=\Omega$. We define

$$
f=\sum_{n=1}^{\infty}\left(2^{n} \cdot \mu\left(\Omega_{n}\right)\right)^{-1} \cdot \mathbb{1}_{\Omega_{n}} .
$$

We then have $f(\omega)>0$ for all ω (since every ω belongs to some Ω_{n}) and

$$
\int_{\Omega}|f| d \mu=\int_{\Omega} f d \mu=\sum_{n=1}^{\infty}\left(2^{n} \cdot \mu\left(\Omega_{n}\right)\right)^{-1} \cdot \mu\left(\Omega_{n}\right)<\infty,
$$

so f is integrable.
Now assume there exists some integrable and strictly positive function f defined on Ω. Let

$$
\Omega_{n}=\{\omega: f(\omega) \geq 1 / n\} .
$$

The facts that $\Omega_{n} \subset \Omega_{n+1}$ for each n and $\cup_{n=1}^{\infty} \Omega_{n}=\Omega$ is evident. Moreover,

$$
\frac{1}{n} \cdot \mu\left(\Omega_{n}\right) \leq \int_{\Omega_{n}} f d \mu \leq \int_{\Omega} f d \mu<\infty
$$

so $\mu\left(\Omega_{n}\right)<\infty$ for each n.
3. Assume that $f_{n}: \mathbb{R} \rightarrow \mathbb{R}, n \in \mathbb{N}$, are measurable functions with $f_{1} \geq f_{2} \geq \cdots \geq 0$ and such that $\int_{\mathbb{R}} f_{n} \mathrm{~d} m \rightarrow 0$ (m denotes Lebesgue measure). Prove that $f_{n} \rightarrow 0$ almost everywhere.
Solution. For every x, the sequence $\left(f_{n}(x)\right)_{n \geq 1}$ is decreasing and bounded, so we can define $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Since $\int f_{n} \rightarrow 0$, there exists N such that $\int f_{n}<\infty$ for all $n \geq N$. Then, f_{N} is an integrable function which dominates $|f|,\left|f_{N}\right|,\left|f_{N+1}\right|,\left|f_{N+2}\right|$, \ldots., so the dominated convergence theorem implies that

$$
\lim _{n \rightarrow \infty} \int f_{n}=\lim _{n \rightarrow \infty, n \geq N} \int f_{n}=\int f
$$

On the other hand, we are told that $\int f_{n} \rightarrow 0$, so we have $\int f=0$. Since $f \geq 0$, we must have $f=0$ almost everywhere. This shows that $f_{n} \rightarrow 0$ almost everywhere.
4. Let $\left(\Omega_{1}, \mathcal{A}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{A}_{2}\right)$ be two measurable spaces.
(a) Give the definition of the product σ-algebra $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$.
(b) Show that, for every $A \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ and every $\omega_{1} \in \Omega_{1}$, we have $A_{\omega_{1}} \in \mathcal{A}_{2}$ (recall that $\left.A_{\omega_{1}}=\left\{\omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in A\right\}\right)$.

Solution.

(a) $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is the σ-algebra generated by the collection \mathcal{G} given by

$$
\mathcal{G}=\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right\} .
$$

(b) Fix $\omega_{1} \in \Omega_{1}$. First assume that $A=A_{1} \times A_{2}$, with $A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}$. We then have

$$
A_{\omega_{1}}= \begin{cases}A_{2} & \text { if } \omega_{1} \in A_{1} \\ \varnothing & \text { otherwise }\end{cases}
$$

Defining $\mathcal{F}=\left\{A \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}: A_{\omega_{1}} \in \mathcal{A}_{2}\right\}$, we have proved that $\mathcal{G} \subset \mathcal{F}$. We will now prove that \mathcal{F} is a σ-algebra, so that

$$
\mathcal{G} \subset \mathcal{F} \quad \Longrightarrow \quad \mathcal{A}_{1} \otimes \mathcal{A}_{2}=\sigma(\mathcal{G}) \subset \sigma(\mathcal{F})=\mathcal{F} \subset \mathcal{A}_{1} \otimes \mathcal{A}_{2}
$$

and the proof will be complete. We have:

- $\varnothing \in \mathcal{F}$ is obvious, since $(\varnothing)_{\omega_{1}}=\varnothing \in \mathcal{A}_{2}$;
- if $A \in \mathcal{F}$, then $\left(A^{c}\right)_{\omega_{1}}=\left(A_{\omega_{1}}\right)^{c} \in \mathcal{A}_{2}$ since $A_{\omega_{1}} \in \mathcal{A}_{2}$, so $A^{c} \in \mathcal{F}$;
- if $A_{1}, A_{2}, \ldots \in \mathcal{F}$, then $\left(\cup A_{n}\right)_{\omega_{1}}=\cup\left(\left(A_{n}\right)_{\omega_{1}}\right) \in \mathcal{A}_{2}$ since each $\left(A_{n}\right)_{\omega_{1}} \in \mathcal{A}_{2}$, so $\cup A_{n} \in \mathcal{F}$.

5. Let $p, q \in(1, \infty)$ satisfy $\frac{1}{p}+\frac{1}{q}=1$.
(a) Assume $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ are sequences of real numbers satisfying

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}<\infty, \quad \sum_{n=1}^{\infty}\left|b_{n}\right|^{q}<\infty
$$

Show that the series $\sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}\right)$ is convergent.
Hint. Work on the measure space $(\mathbb{N}, P(\mathbb{N}), \mu)$, where μ is the counting measure. Note that a function $f: \mathbb{N} \rightarrow \overline{\mathbb{R}}$ can be associated to a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ by setting $f_{n}=f(n)$. When is a function integrable, and what does integration mean in this space? What is \mathcal{L}^{p} ?
(b) Again assume that $\left(a_{n}\right)_{n \in \mathbb{N}}$ satisfies $\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}<\infty$. Show that

$$
\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p}=\sup \left\{\sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}\right):\left(b_{n}\right)_{n \in \mathbb{N}} \text { is a sequence satisfying } \sum_{n=1}^{\infty}\left|b_{n}\right|^{q}=1\right\}
$$

Hint. To show that the left-hand side is less than or equal to the right-hand side, consider

$$
b_{n}^{\star}=C \cdot \operatorname{sign}\left(a_{n}\right) \cdot\left(a_{n}\right)^{p-1}
$$

where $C=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{-1 / q}$.

Solution.

(a) As suggested in the hint, we work on the measure space $(\mathbb{N}, P(\mathbb{N}), \mu)$ and for functions $a: \mathbb{N} \rightarrow \overline{\mathbb{R}}$ we use the notation a_{n} rather than $a(n)$ (so that $a=\left(a_{n}\right)_{n \in \mathbb{N}}$). Note that every function is measurable, since we take the power set as the σ algebra. A function a is integrable if and only if $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$ and, in that case, we have $\int_{\mathbb{N}} a_{n} d \mu=\sum_{n=1}^{\infty} a_{n}$. Furthermore, for $1 \leq p<\infty, a \in \mathcal{L}^{p}$ if and only if $\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}<\infty$, and then we have

$$
\|a\|_{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p} .
$$

Now, given sequences $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ and $b=\left(b_{n}\right)_{n \in \mathbb{N}}$ so that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}<\infty$ and $\sum_{n=1}^{\infty}\left|b_{n}\right|^{q}<\infty$, Hölder's inequality gives

$$
\sum_{n=1}^{\infty}\left|a_{n} \cdot b_{n}\right|=\int_{\mathbb{N}}|a \cdot b| d \mu \leq\|a\|_{p} \cdot\|b\|_{q}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p} \cdot\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{q}\right)^{1 / q}<\infty .
$$

Hence, $\sum\left(a_{n} \cdot b_{n}\right)$ is absolutely convergent, hence it is convergent.
(b) Assume $b=\left(b_{n}\right)_{n \in \mathbb{N}}$ is a sequence satisfying $\sum_{n=1}^{\infty}\left|b_{n}\right|^{q}=1$. We then have, as in the previous item

$$
\sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}\right) \leq \sum_{n=1}^{\infty}\left|a_{n} \cdot b_{n}\right| \leq\|a\|_{p} \cdot\|b\|_{q}=\|a\|_{p} .
$$

This shows that

$$
\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p} \geq \sup \left\{\sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}\right):\left(b_{n}\right)_{n \in \mathbb{N}} \text { is a sequence satisfying } \sum_{n=1}^{\infty}\left|b_{n}\right|^{q}=1\right\} .
$$

In order to prove the reverse inequality, define

$$
b_{n}^{\star}=C \cdot \operatorname{sign}\left(a_{n}\right) \cdot\left(a_{n}\right)^{p-1}, n \in \mathbb{N}, \quad \text { where } C=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{-1 / q} .
$$

Note that

$$
\sum_{n=1}^{\infty}\left|b_{n}^{\star}\right|^{q}=C^{q} \sum_{n=1}^{\infty}\left|a_{n}\right|^{(p-1) q}=C^{q} \sum_{n=1}^{\infty}\left|a_{n}\right|^{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{-1+1}=1 .
$$

We also have $a_{n} \cdot b_{n}^{\star}=C \cdot\left|a_{n}\right|^{p}$ for every n, so

$$
\sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}^{\star}\right)=C \sum_{n=1}^{\infty}\left|a_{n}\right|^{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1-\frac{1}{q}}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p} .
$$

This proves that

$$
\begin{aligned}
\sup \left\{\sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}\right):\left(b_{n}\right)_{n \in \mathbb{N}} \text { is a sequence satisfying } \sum_{n=1}^{\infty}\left|b_{n}\right|^{q}=1\right\} & \geq \sum_{n=1}^{\infty}\left(a_{n} \cdot b_{n}^{\star}\right) \\
& =\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p} .
\end{aligned}
$$

