
MEASURE THEORY AND INTEGRATION – FINAL EXAM

1. Let E ⊂ R be a Borel measurable set with finite measure m(E).

(a) Show that there exists a Borel measurable set A ⊂ E with m(A) = m(E)/2.

(b) Show that for all ε > 0 there exists an open set B with E ⊂ B and m(B) <
m(E) + ε.

Solution.

(a) For x ≥ 0, define f(x) = m(E ∩ [−x, x]). f is continuous since

|f(x+ y)− f(x)| = m(E ∩ [−x− y, x+ y])−m(E ∩ [−x, x])

= m(E ∩ ([−x− y,−x) ∪ (x, x+ y]))

= m(E ∩ [−x− y,−x)) +m(E ∩ (x, x+ y])

= m([−x− y,−x)) +m((x, x+ y]) ≤ 2y.

Also note that f(0) ≤ m({0}) = 0 and the sets E ∩ [−n, n] are increasing and their
union is equal to E, so

lim
n→∞

f(n) = lim
n→∞

m(E ∩ [−n, n]) = m(E).

By the intermediate value theorem, there exists x such that f(x) = m(E∩[−x, x]) =
m(E)/2.

(b) Fix ε > 0. Recall that, since E is measurable,

m(E) = m∗(E) = inf

{ ∞∑
i=1

`(Ri) : R1, R2, . . . are rectangles covering E

}
.

We can thus choose R1, R2, . . . covering E such that
∑∞

i=1 `(Ri) < m(E) + ε/2.
Now for each i, take an open rectangle R′i which contains i and such that m(R′i) =
`(Ri) + ε2−i−1. We then have E ⊂ ∪R′i and

∞∑
i=1

m(R′i) ≤
∞∑
i=1

(`(Ri) + ε2−i−1) ≤ m(E) + ε.

2. (a) Let f be a non-negative and measurable function defined on a measure space
(Ω,A, µ). Show that

µ({ω : f(ω) > α}) ≤ 1

α

∫
Ω
f dµ ∀α > 0.

(b) Show that a measure space (Ω,A, µ) is σ-finite if and only if there exists an inte-
grable function f : Ω→ R so that f(ω) > 0 for all ω.

Solution.

(a) f ≥ α · 1{ω:f(ω)>α}, so∫
f dµ ≥

∫
α · 1{ω:f(ω)>α} dµ = α · µ({ω : f(ω) > α}).
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(b) Assume that the space is σ-finite. Then, there exist sets Ω1 ⊂ Ω2 ⊂ · · · so that
Ωn ∈ A, µ(Ωn) <∞ for all n and ∪∞n=1Ωn = Ω. We define

f =
∞∑
n=1

(2n · µ(Ωn))−1 · 1Ωn .

We then have f(ω) > 0 for all ω (since every ω belongs to some Ωn) and∫
Ω
|f | dµ =

∫
Ω
f dµ =

∞∑
n=1

(2n · µ(Ωn))−1 · µ(Ωn) <∞,

so f is integrable.
Now assume there exists some integrable and strictly positive function f defined
on Ω. Let

Ωn = {ω : f(ω) ≥ 1/n}.

The facts that Ωn ⊂ Ωn+1 for each n and ∪∞n=1Ωn = Ω is evident. Moreover,

1

n
· µ(Ωn) ≤

∫
Ωn

f dµ ≤
∫

Ω
f dµ <∞,

so µ(Ωn) <∞ for each n.

3. Assume that fn : R → R, n ∈ N, are measurable functions with f1 ≥ f2 ≥ · · · ≥ 0 and
such that

∫
R fn dm → 0 (m denotes Lebesgue measure). Prove that fn → 0 almost

everywhere.

Solution. For every x, the sequence (fn(x))n≥1 is decreasing and bounded, so we can
define f(x) = limn→∞ fn(x). Since

∫
fn → 0, there exists N such that

∫
fn <∞ for all

n ≥ N . Then, fN is an integrable function which dominates |f |, |fN |, |fN+1|, |fN+2|,
. . ., so the dominated convergence theorem implies that

lim
n→∞

∫
fn = lim

n→∞,n≥N

∫
fn =

∫
f.

On the other hand, we are told that
∫
fn → 0, so we have

∫
f = 0. Since f ≥ 0, we

must have f = 0 almost everywhere. This shows that fn → 0 almost everywhere.

4. Let (Ω1,A1) and (Ω2,A2) be two measurable spaces.

(a) Give the definition of the product σ-algebra A1 ⊗A2.

(b) Show that, for every A ∈ A1 ⊗ A2 and every ω1 ∈ Ω1, we have Aω1 ∈ A2 (recall
that Aω1 = {ω2 : (ω1, ω2) ∈ A}).

Solution.

(a) A1 ⊗A2 is the σ-algebra generated by the collection G given by

G = {A1 ×A2 : A1 ∈ A1, A2 ∈ A2} .
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(b) Fix ω1 ∈ Ω1. First assume that A = A1 × A2, with A1 ∈ A1, A2 ∈ A2. We then
have

Aω1 =

A2 if ω1 ∈ A1,

∅ otherwise.
.

Defining F = {A ∈ A1 ⊗ A2 : Aω1 ∈ A2}, we have proved that G ⊂ F . We will
now prove that F is a σ-algebra, so that

G ⊂ F =⇒ A1 ⊗A2 = σ(G) ⊂ σ(F) = F ⊂ A1 ⊗A2

and the proof will be complete. We have:

• ∅ ∈ F is obvious, since (∅)ω1 = ∅ ∈ A2;

• if A ∈ F , then (Ac)ω1 = (Aω1)c ∈ A2 since Aω1 ∈ A2, so Ac ∈ F ;

• if A1, A2, . . . ∈ F , then (∪An)ω1 = ∪((An)ω1) ∈ A2 since each (An)ω1 ∈ A2, so
∪An ∈ F .

5. Let p, q ∈ (1,∞) satisfy 1
p + 1

q = 1.

(a) Assume (an)n∈N and (bn)n∈N are sequences of real numbers satisfying

∞∑
n=1

|an|p <∞,
∞∑
n=1

|bn|q <∞.

Show that the series
∑∞

n=1(an · bn) is convergent.
Hint. Work on the measure space (N, P (N), µ), where µ is the counting measure.
Note that a function f : N→ R can be associated to a sequence (fn)n∈N by setting
fn = f(n). When is a function integrable, and what does integration mean in this
space? What is Lp?

(b) Again assume that (an)n∈N satisfies
∑∞

n=1 |an|p <∞. Show that( ∞∑
n=1

|an|p
)1/p

= sup

{ ∞∑
n=1

(an · bn) : (bn)n∈N is a sequence satisfying
∞∑
n=1

|bn|q = 1

}
.

Hint. To show that the left-hand side is less than or equal to the right-hand side,
consider

b?n = C · sign(an) · (an)p−1,

where C = (
∑∞

n=1 |an|p)
−1/q.

Solution.

(a) As suggested in the hint, we work on the measure space (N, P (N), µ) and for func-
tions a : N → R we use the notation an rather than a(n) (so that a = (an)n∈N).
Note that every function is measurable, since we take the power set as the σ-
algebra. A function a is integrable if and only if

∑∞
n=1 |an| <∞ and, in that case,

we have
∫
N an dµ =

∑∞
n=1 an. Furthermore, for 1 ≤ p < ∞, a ∈ Lp if and only if∑∞

n=1 |an|p <∞, and then we have

‖a‖p =

( ∞∑
n=1

|an|p
)1/p

.
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Now, given sequences a = (an)n∈N and b = (bn)n∈N so that
∑∞

n=1 |an|p < ∞ and∑∞
n=1 |bn|q <∞, Hölder’s inequality gives

∞∑
n=1

|an · bn| =
∫
N
|a · b| dµ ≤ ‖a‖p · ‖b‖q =

( ∞∑
n=1

|an|p
)1/p

·

( ∞∑
n=1

|bn|q
)1/q

<∞.

Hence,
∑

(an · bn) is absolutely convergent, hence it is convergent.

(b) Assume b = (bn)n∈N is a sequence satisfying
∑∞

n=1 |bn|q = 1. We then have, as in
the previous item

∞∑
n=1

(an · bn) ≤
∞∑
n=1

|an · bn| ≤ ‖a‖p · ‖b‖q = ‖a‖p.

This shows that( ∞∑
n=1

|an|p
)1/p

≥ sup

{ ∞∑
n=1

(an · bn) : (bn)n∈N is a sequence satisfying
∞∑
n=1

|bn|q = 1

}
.

In order to prove the reverse inequality, define

b?n = C · sign(an) · (an)p−1, n ∈ N, where C =

( ∞∑
n=1

|an|p
)−1/q

.

Note that

∞∑
n=1

|b?n|q = Cq
∞∑
n=1

|an|(p−1)q = Cq
∞∑
n=1

|an|p =

( ∞∑
n=1

|an|p
)−1+1

= 1.

We also have an · b?n = C · |an|p for every n, so

∞∑
n=1

(an · b?n) = C
∞∑
n=1

|an|p =

( ∞∑
n=1

|an|p
)1− 1

q

=

( ∞∑
n=1

|an|p
)1/p

.

This proves that

sup

{ ∞∑
n=1

(an · bn) : (bn)n∈N is a sequence satisfying
∞∑
n=1

|bn|q = 1

}
≥
∞∑
n=1

(an · b?n)

=

( ∞∑
n=1

|an|p
)1/p

.
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